Course Name:	A.P. Calculus AB		
Credits:	1		
Prerequisites:	Pre-Calculus \& Trigonometry (Recommended grade of B or better or by teacher approval)		
Description:	Equivalent to a first semester college calculus course. The basis of study includes limits and continuity, derivatives, integrals, and the applications. A TI-83 or TI-84 calculator is required. A TI-89 is not allowed.		
Academic Standards:	College Board Mathematical Practices for AP Calculus AB		
Units:	Unit Length:	Unit Standards:	Unit Outcomes:
Limits and Continuity	16 days	CHA 1-2B, Lim 1-2B, Lim 1-1E, Lim 1-1C, Lim 1-3C, Lim 1-2C, Lim 2-3D, Lim 2-2D, Lim 2-3B, Lim 2-3C, Lim 2-1E, Fun 1-3E, Cha 2-2B	Students will learn the concept of the limit in this unit. They will learn how to evaluate, notate and apply limits to real world applications. This unit will also explore rates of change and how to connect the limit to the following concept of the derivative.
Derivatives	35 days	Cha 2-1D, Cha 2-4C, Cha 2-1E, Fun 2-3E, Fun 3-1E, Cha 3-1E, Fun 3-1D, Fun 3-1C, Cha 3-2A	Students will learn how to take the derivative of various functions in this unit. They will also learn notation and begin investigating some uses of the derivative in real world applications.
Applications of Derivatives	24 days	Fun 1-3E, Fun 4-1E, Fun 4-2E, Fun 4-3D, Fun 4-2D, Fun 4-2A, Fun 4-3F, Cha 3-1F, Fun 4-1E, Fun 4-3E, Cha 3-1E, Cha 3-3F	Students will apply their knowledge of derivatives in this unit to solve real worlds problems. They will learn how derivatives relate to the graphs of functions and how tests can be used to picture important features of graphs.
The Definite Integral	19 days	Cha 4-4B, Lim 5-1F, Lim 5-2C, Fun 5-2D, Fun 5-1D, Fun 5-3D, Fun 5-3D, Fun 6-4C, Fun 6-1C	Students wil explore and learn about the definite integral. They will learn notation and properties of integrals and how the fundamental theorem of calculus makes a connection between derivative calculus and integral calculus.
Differential Equations and Mathematical Modeling	10 days	Fun 7-2C, Fun 7-3G, Fun 7-4D, Fun 6-1E, Fun 7-1E, Fun 7-3G	Students will get an introduction to differential equations in this unit. They will learn how antiderivatives can be used with various strategies to solve differential equations problems.
Applications of Definite Integrals	20 days	Cha 4-4B, Cha 4-3D, Cha 5-4C, Cha 5-1E, Cha 5-2B, Cha 5-3D, Cha 5-2D, Cha 5-4E, Cha 6-3D	Students will explore various applications of the definite integral in this unit. They will solve real world problems with rates of change and learn how the integral can be used to calculate geometric values such as area and volume.

Unit Name: Limits and Continuity	Length: 16 days
Standards: CHA 1-2B, Lim 1-2B, Lim 1-1E, Lim 1-1C, Lim 1-3C, Lim 1-2C, Lim 2-3D, Lim 2-2D, Lim 2-3B, Lim 2-3C, Lim 2-1E, Fun 1-3E, Cha 2-2B	Outcomes: Students will learn the concept of the limit in this unit. They will learn how to evaluate, notate and apply limits to real world applications. This unit will also explore rates of change and how to connect the limit to the following concept of the derivative.
Essential Questions: How do limits describe the behavior of a function? What are the strategies used to determine the limit of a function? What determines continuity and how can you find and describe discontinuities?	Learning Targets: Students will be able to: -Calculate average and intantaneous rates of change. -Calculate limits as x approaches positive or negative infinity. -Identify intervals on which a function is continuous. -Find the equation of a tangent and a normal line to a curve.
Topic 1: Rates of Change and Limits	Length: 4 days
Standard(s): CHA 1-2B, Lim 1-2B, Lim 1-1E, Lim 1-1C, Lim 1-3C, Lim 1-2C	Academic Vocabulary: Average Speed, Instantaneous Speed, Limit, One-Sided Limit, Two-Sided Limit, Sandwich Theorem
Lesson Frame:	We will explore the definition of a limit and how it can be used to find rates of change.
	I will calculate average and intantaneous rates of change.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 2: Limits Involving Infinity	Length: 3 days
Standard(s): Lim 1-2B, Lim 1-1E, Lim 2-3D, Lim 2-2D	Academic Vocabulary: Infinite Limits, End Behavior Model
Lesson Frame:	We will investigate what happens at the end of a function.
	I will calculate limits as x approaches positive or negative infinity.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 3: Continuity	Length: 3 days
Standard(s): Lim 2-3B, Lim 2-3C, Lim 2-1E, Fun 1-3E	Academic Vocabulary: Continuity, Continuous Function, Intermediate Value Theorem
Lesson Frame:	We will define continuity and the properties of continuous functions.
	I will identify intervals on which a function is continuous.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 4: Rates of Change and Tangent Lines	Length: 4 days
Standard(s): Cha 2-2B	Academic Vocabulary: Average Rate of Change, Tangent, Normal Line
Lesson Frame:	We will define a tangent line and discuss its relation to slope.
	I will find the equation of a tangent and a normal line to a curve.

Unit Name: Limits and Continuity	Length: 16 days
Standards: CHA 1-2B, Lim 1-2B, Lim 1-1E, Lim 1-1C, Lim 1-3C, Lim 1-2C, Lim 2-3D, Lim 2-2D, Lim 2-3B, Lim 2-3C, Lim 2-1E, Fun 1-3E, Cha 2-2B	Outcomes: Students will learn the concept of the limit in this unit. They will learn how to evaluate, notate and apply limits to real world applications. This unit will also explore rates of change and how to connect the limit to the following concept of the derivative.
Essential Questions: How do limits describe the behavior of a function? What are the strategies used to determine the limit of a function? What determines continuity and how can you find and describe discontinuities?	Learning Targets: Students will be able to: -Calculate average and intantaneous rates of change. -Calculate limits as x approaches positive or negative infinity. -ldentify intervals on which a function is continuous. -Find the equation of a tangent and a normal line to a curve.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:

Unit Name: Derivatives

Standards: Cha 2-1D, Cha 2-4C, Cha 2-1E, Fun 2-3E, Fun 3-1E, Cha 3-1E, Fun 3-1D, Fun 3-1C, Cha 3-2A
Essential Questions: How do you find the slope of a curve at an instantaneous point? How can you find the derivative of a function using the limit process? What rules allow you to find the derivative of a function without using the entire limit process?

Length: 35 days

Outcomes: Students will learn how to take the derivative of various functions in this unit. They will also learn
notation and begin investigating some uses of the derivative in real world applications.
Learning Targets: Students will be able to:

- Calculate the slope of a function using the definition of a derivative

Tell where a function is not differentiable

- Use the rules of differentiation to calculate a derivative.
- Use derivatives to analyze straight line motion.

Use the rules of differentiation to calculate derivatives for the six basic trigonometric functions.

- Differentiate a composite function

Find the derivative of an implicitly defined function

- Calculate the derivative of an inverse trigonometric function.
- Calculate the derivative of an exponential and a logarithmic function.

Length: 3 days
Academic Vocabulary: Derivative, Derivative Notation

We will define a derivative and practice writing notations for derivatives.
I will calculate the slope of a function using the definition of a derivative.
Notes:

Application Examples

Topic 2: Differentiability	Length: 2 days
Standard(s): Fun 2-3E	Academic Vocabulary: Differentiable, Intermediate Value Theorem for Derivatives
Lesson Frame:	We will explore where functions fail to have derivatives.
	I will tell where a function is not differentiable.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:

Topic 3: Rules for Differentiation
Standard(s): Fun 3-1E
Lesson Frame:
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems Application Examples

Topic 4: Velocity and Other Rates of Change

Standard(s): Cha 3-1E, Cha 3-2A

Lesson Frame

Length: 4 days
Academic Vocabulary: Power Rule, Product Rule, Quotient Rule, Second Derivative
We will define the basic shortcut rules for taking derivatives.
I will use the rules of differentiation to calculate a derivative.
Notes:

Length: 4 days
Academic Vocabulary: Instantaneous Rate of Change, Velocity, Speed, Acceleration
We will explore how derivatives tie into real worl applications of velocity and acceleration
I will use derivatives to analyze straight line motion.

Unit Name: Derivatives
Standards: Cha 2-1D, Cha 2-4C, Cha 2-1E, Fun 2-3E, Fun 3-1E, Cha 3-1E, Fun 3-1D, Fun 3-1C, Cha 3-2A

Length: 35 days
Outcomes: Students will learn how to take the derivative of various functions in this unit. They will also learn
notation and begin investigating some uses of the derivative in real world applications.
Essential Questions: How do you find the slope of a curve at an instantaneous point? How can you find the derivative of a function using the limit process? What rules allow you to find the derivative of a function without using the entire limit process?

Learning Targets: Students will be able to:

- Calculate the slope of a function using the definition of a derivative.

Tell where a function is not differentiable

- Use the rules of differentiation to calculate a derivative.
- Use derivatives to analyze straight line motion.

Use the rules of differentiation to calculate derivatives for the six basic trigonometric functions.

- Differentiate a composite function
-Find the derivative of an implicitly defined function
- Calculate the derivative of an inverse trigonometric function.
- Calculate the derivative of an exponential and a logarithmic function.

Notes:

Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems

 Application ExamplesTopic 5: Derivatives of Trigonometric Functions
Standard(s): Fun 3-1D
Lesson Frame:
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems
Application Examples

Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems Application Examples

Topic 6: Chain Rule	Length: 3 days
Standard(s): Fun 3-1C	Academic Vocabulary: Chain Rule, Power Chain Rule
Lesson Frame:	We will investigate composite functions and how to use the chain rule to take the derivative.
	I will differentiate a composite function.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 7: Implicit Differentiation	Length: 3 days
Standard(s): Fun 3-1E	Academic Vocabulary: Implicit Differentiation,
Lesson Frame:	We will investigate implicitly defined functions and learn to take derivatives of them.
	I will find the derivative of an implicitly defined function.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 8: Derivatives of Inverse Trigonometric Functions	Length: 3 days
Standard(s): Fun 3-1E	Academic Vocabulary: Inverse Trigonometric Function

Unit Name: Derivatives	Length: 35 days
Standards: Cha 2-1D, Cha 2-4C, Cha 2-1E, Fun 2-3E, Fun 3-1E, Cha 3-1E, Fun 3-1D, Fun 3-1C, Cha 3-2A	Outcomes: Students will learn how to take the derivative of various functions in this unit. They will also learn notation and begin investigating some uses of the derivative in real world applications.
Essential Questions: How do you find the slope of a curve at an instantaneous point? How can you find the derivative of a function using the limit process? What rules allow you to find the derivative of a function without using the entire limit process?	Learning Targets: Students will be able to: - Calculate the slope of a function using the definition of a derivative. - Tell where a function is not differentiable. - Use the rules of differentiation to calculate a derivative. - Use derivatives to analyze straight line motion. - Use the rules of differentiation to calculate derivatives for the six basic trigonometric functions. - Differentiate a composite function. -Find the derivative of an implicitly defined function. -Calculate the derivative of an inverse trigonometric function. -Calculate the derivative of an exponential and a logarithmic function.
Lesson Frame:	We will derive a formula for taking the derivative of inverse trigonometric functions.
	I will calculate the derivative of an inverse trigonometric function.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 9: Derivatives of Exponential and Logarithmic Functions	Length: 4 days
Standard(s): Fun 3-1E	Academic Vocabulary: Exponential Function, Logarithmic Function
Lesson Frame:	We will explore how derivatives can be used on logarithmic and exponential functions.
	I will calculate the derivative of an exponential and a logarithmic function.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:

Unit Name: Differential Equations and Mathematical Modeling	Length: 10 days
Standards: Fun 7-2C, Fun 7-3G, Fun 7-4D, Fun 6-1E, Fun 7-1E, Fun 7-3G	Outcomes: Students will get an introduction to differential equations in this unit. They will learn how antiderivatives can be used with various strategies to solve differential equations problems.
Essential Questions: How can antiderivatives be used to solve equations with derivatives in them? What techniques can be uesd to solve initial value problems?	Learning Targets: Students will be able to: -Solve an initial value problem using antiderivatives. -Compute an indefinite integral using u-substitution methods. -Use separation of variables to solve a differential equation.
Topic 1: Slope Fields and Differential Equations	Length: 3 days
Standard(s): Fun 7-2C, Fun 7-3G, Fun 7-4D	Academic Vocabulary: Differential Equations, Slope Fields
Lesson Frame:	We will define a differential equation and explore strategies to solve them.
	I will solve an initial value problem using antiderivatives.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 2: Antidifferentiation by Substititution	Length: 3 days
Standard(s): Fun 6-1E	Academic Vocabulary: Indefinite Integrals, U-Substitution
Lesson Frame:	We will create a method for finding the antiderivative of a function that needs to use substitution.
	I will compute an indefinite integral using u-substitution methods.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 3: Separable Differential Equations	Length: 2 days
Standard(s): Fun 7-1E, Fun 7-3G	Academic Vocabulary: Separable Differential Equation, Law of Exponential Change
Lesson Frame:	We will explore differential equations with both x and y on the same size and formalize a way to solve them.
	I will use separation of variables to solve a differential equation.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:

Unit Name: Applications of Definite Integrals

Standards: Cha 4-4B, Cha 4-3D, Cha 5-4C, Cha 5-1E, Cha 5-2B, Cha 5-3D, Cha 5-2D, Cha 5-4E, Cha 6-3D

Essential Questions: How can you use integrals to solve real world problems involving rates of change? How can you find the area between two curves in the plane? How can integrals be used to find volumes of solid objects?

Topic 1: Integral as Net Change
 Standard(s): Cha 4-4B, Cha 4-3D

Lesson Frame:
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems,
Application Examples

Topic 2: Areas in the Plane	Length: 4 days
Standard(s): Cha 5-4C, Cha 5-1E, Cha 5-2B	Academic Vocabulary: Area Between Curves
Lesson Frame:	We will formalize techniques for finding the areas of shapes in the x-y plane.
	I will use integration to find the area between two curves.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 3: Volumes of Solids	Length: 4 days
Standard(s): Cha 5-3D, Cha 5-2D, Cha 5-4E	Academic Vocabulary: Cross Section, Volume of Revolution, Disk Method, Shell Method
Lesson Frame:	We will explore how integrals can be used to find the volume of 3 dimensional objects.
	I will use integration to calculate volumes of solids.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
	Length: 3 days
Topic 4: Lengths of Curves	Academic Vocabulary: Sine Wave, Arc Length
Standard(s): Cha 6-3D	We will explore how integrals can be used to find the length of curves.
Lesson Frame:	I will use integration to calculate the length of a curve.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:

